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Abstract
The stability of the face-centered cubic (fcc) structure in microphase separated copolymers is
investigated by a coarse-grained approach. Direct simulations of the equation for the
microphase separation in three dimensions indicate that there is a narrow area above a certain
degree of segregation in the phase diagram, where the fcc structure is the most stable structure.
By employing the mode expansion, we have confirmed that the fcc structure can form as a
metastable structure even in the weak segregation regime.

1. Introduction

The face-centered cubic (fcc) phase has been observed in
various sphere-formed systems, as has the body-centered cubic
(bcc) structure. Colloids, surfactants, and atomic systems
are representative examples. Recently, the fcc structure
has been observed in block copolymer solutions [1, 2], in
diblock/homopolymer blend [3], and in triblock copolymer
systems [4]. On the other hand, in the limit of pure diblock
copolymer melts there have been no experiments that have
shown that the fcc structure is stable.

The morphological transitions of A–B type diblock
copolymer melts have been investigated using the mode
expansion method [5–10]. The time evolution of the
microphase separated structures was investigated by solving
the amplitude equations of various fundamental modes. The
four equilibrium structures (lamellar, bcc, hexagonal cylinder,
and gyroid) observed in the weak segregation regime have
been studied by taking into account the modes with the gyroid
symmetry [8]. The Fddd structure has been reported in [11]
as another equilibrium phase. The recent theories of block
copolymers are summarized in [12].

In [9], amplitude equations were derived for the fcc
symmetry with the sufficient numbers of modes expressing the
fcc structure, but the fcc solution was found to be unstable.
On the other hand, Matsen and Bates reported the existence
of a narrow region in the phase diagram in which the close-
packed spheres (of either fcc structure or hexagonal close-
packed structure) are stable [13, 14]. This discrepancy was
attributed to the fact that either the mode expansion in such
segregation regimes is invalid or that the free energy is too

simple to contain the fcc structure. However, even if these
assumptions are correct, the reason why only the fcc structure
cannot be investigated by the mode expansion method remains
unclear.

The purpose of the present paper is to investigate
the fcc structure in thermal equilibrium by more accurate
mode expansion and by numerical simulations. The free
energy functional employed in previous studies is also used
herein [15]:

F[φ] =
∫

dr
[

1
2 (∇φ)2 + W (φ)

]

+ α

2

∫
dr

∫
dr′G(r, r′)

(
φ(r) − φ̄

)(
φ(r′) − φ̄

)
, (1)

where
W (φ) = −τ

2
φ2 + g

4
φ4. (2)

The variable φ represents the local volume fraction difference
between A and B monomers, i.e. φ = φA − φB, where φA

(φB) is the local volume fraction of the A (B) monomers. The
incompressibility condition φA + φB = 1 has been imposed.
The coefficients α and g are positive constants and φ̄ is the
spatial average of φ. The parameter τ is negative at the high-
temperature uniform phase and positive for the microphase
separated state at low temperature. The function G(r, r′) in the
second term of equation (1) is defined through the following
relation:

−∇2G = δ(r − r′). (3)

The time evolution equation for φ is given by [16]

∂φ

∂ t
= ∇2 δF

δφ
= ∇2(−∇2φ − τφ + gφ3) − α(φ − φ̄). (4)
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The parameters in equation (1) are connected to the
parameters in self-consistent field theory (SCFT) [13, 14].
Noting that equation (1) is rescaled by the coefficient Dφ =
�2/(12a(1 − a)) in front of (∇φ)2/2, it is found that τ =
χ/Dφ , α = 9/(Dφ N2�2a2(1 − a)2) and g ∝ 1/Dφ ,
where the Flory–Huggins interaction parameter χ , the index
of polymerization measuring the number of monomers per
macromolecule N , the block ratio of A-block a and the Kuhn
statistical length � [17].

In the present study, the phase diagram is given by direct
simulation of equation (4) including the fcc structure as well as
other equilibrium structures. Furthermore, the mode expansion
method is employed by taking account of the higher harmonics
of the fundamental modes of the fcc symmetry. The obtained
results by the mode expansion are applicable to other sphere-
forming systems in the weak segregation limit, even though the
free energy of the diblock copolymers is considered initially.

The organization of the present paper is as follows. In
section 2, the equilibrium phase diagram obtained by the
direct simulations is presented. In section 3, a coupled set
of equations for amplitudes is derived by the mode expansion,
and a linear stability analysis is performed. A summary and
discussion are presented in section 4. The form of the free
energy and the amplitude equations for the bcc structure are
given in the appendix.

2. Numerical simulation

The direct simulations of the time evolution given by
equation (4) are carried out by employing the semi-implicit
scheme [18]. The value of φ(n+1) at the n + 1 step is computed
by using the value of φ(n) of the previous step as [1/dt + ∇4

d −
g∇2

d D(φ(n))2 +α]φ(n+1) = (1/dt − τ∇2
d )φ

(n) +αφ̄, where the
discrete Laplacian ∇d and a diagonal matrix D(φ(n)) whose
diagonal components are given by φ(n). The time increment dt
is set to 0.1. The simulation box is divided into 32 × 32 × 32
grids. The initial values of φ are provided by the small cosine
modulations of the target structures. The periodic boundary
conditions are imposed. The coefficients of g and α are fixed
as g = α = 1 throughout the simulations. In order to make
the periodicity adjust to its equilibrium, the linear length of the
simulation box L is regarded as a dynamical variable. Its time
evolution is assumed to be given by the following fictitious
equation of motion [19]:

dL

dt
= −μ

∂(F/V )

∂L
, (5)

where F is the total free energy and V is the total volume of
the system. This equation gives us the period for the minimum
value of the free energy. The increment of the length is set to
0.0001 and μ = 100. The space mesh size is given by L/32.

Figure 1 shows the angular-averaged power spectrum I (q)

of the equilibrium structures obtained by the direct simulations.
We obtain the characteristic peak positions following the ratios
of 1:√4/3:√8/3:√11/3:√12/3 · · · for fcc lattice and the
ratios of 1:√2:√3:√4 · · · for bcc lattice [20]. The forms of
I (q) of the fcc structure for τ = 2.10 and φ̄ = 0.15 and for
τ = 2.70 and φ̄ = 0.60 are shown in figures 1(a) and (c),

respectively. Figures 1(b) and (d) are the I (q) of the bcc for
τ = 2.10 and φ̄ = 0.15 and the I (q) of the bcc for τ = 2.70
and φ̄ = 0.60, respectively. It is noted that the

√
4/3 peak of

the fcc structure for τ = 2.10 and φ̄ = 0.15 is comparable to
that of the first peak in figure 1(a), whereas the

√
2 bcc peak is

100 times less than the first peak in figure 1(b).
The spatial averaged free energy of the structures Fave =

F/V can be evaluated by substituting the obtained data of
φ(r) at t → ∞ into equation (1). The values of Fave for
the fcc structure and for the bcc structure are obtained as
Fave = −2.388 20 × 10−2 and Fave = −2.407 43 × 10−2

for τ = 2.10 and φ̄ = 0.15, and Fave = −0.454 545 and
Fave = −0.454 519 for τ = 2.70 and φ̄ = 0.60, respectively.
This means that the fcc structure has a higher energy than
the bcc structure for τ = 2.10 and φ̄ = 0.15, whereas the
fcc structure becomes more stable than the bcc structure for
τ = 2.70 and φ̄ = 0.60. Therefore, one may conclude that
the fcc structure exists as a stable equilibrium structure above
a certain degree of segregation.

In the same way, the spatial averaged free energies of
lamellar, hexagonal cylinder, gyroid, and Fddd are evaluated.
Comparing these free energies, the phase diagram in the τ–
φ̄ plane is obtained in figure 2. A small area was found in
which the free energy of the fcc structure is the lowest. This
phase diagram is qualitatively consistent with that obtained by
Matsen and Bates by the SCFT [13, 14], with the exception
that the phase diagram of the present study contains the
region in which the Fddd structure is most stable, as reported
in [10, 11].

In this section, it is found by employing the simple free
energy (1) that there is the narrow region where the fcc
structure becomes the most stable. The fcc solutions can be
stable even in the weak segregation regime, whereas it has
been reported in [9] that the fcc solution was unstable by
the one-mode expansion. In order to clarify the reason for
this discrepancy, the linear stability analysis by more accurate
mode expansion will be carried out in section 3.

3. Mode expansion

The weak segregation limit is considered and the variable φ is
expanded as follows:

φ(r) = φ̄ + 2
7∑

i=1

fi cos(qi · r), (6)

where fi are real amplitudes. The seven reciprocal lattice
vectors are given by

q1 = Q√
3
(1, 1, 1), q2 = Q√

3
(1,−1, 1),

q3 = Q√
3
(−1, 1, 1), q4 = Q√

3
(1, 1,−1),

q5 = Q√
3
(2, 0, 0), q6 = Q√

3
(0, 2, 0),

q7 = Q√
3
(0, 0, 2).

(7)
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Figure 1. Angular-averaged power spectra I (q) presented as a function of wavenumber q = |q|.

Figure 2. Phase diagram obtained by the direct simulation of
equation (4). The regions indicated by L, G, H, B, F, and D are the
stable phase of lamellae, gyroid, hexagons, bcc, fcc, and disorder,
respectively. The insert is the enlargement near the triple point G, L,
and H, where the Fddd structure is the most stable structure.

The first four vectors of equation (7) produce the fcc structure,
as shown in figure 3(a). The other vectors, q5, q6, and q7

have not been considered in the previous paper [9]. If only

Figure 3. The structures expressed by the reciprocal vectors of the
fcc structure (a) and the next highest harmonics (b) in the isosurface
representation with φISO = 1.0.

f5, f6, and f7 are non-zero and are of the same magnitude,
then equation (6) represents the Schwarz P surface as shown
in figure 3(b). From equation (7), it is obvious that |qi | =
Q (i = 1, 2, 3, 4) and |q j | = 2Q/

√
3 ( j = 5, 6, 7). The

higher modes in equation (6) compose the peaks for which the
position is

√
4/3 times that of the first peak in figures 1(a) and

(c). It is noted that more accurate expansions are needed by
taking into account the higher modes if the mode expansion
method is applied above a certain degree of segregation such
as τ = 2.70 and φ̄ = 0.60 as shown in figure 1(c).

3
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Substituting equation (6) into equation (4), a coupled set
of amplitude equations is obtained as follows:

d f1

dt
= −|q1|2g

[
	(|q1|) f1 − 3 f 3

1

+ 6 f1

7∑
i=1

f 2
i + 6φ̄ f2 f6 + 6φ̄ f3 f5 + 6φ̄ f4 f7

+ 6 f2 f3 f4 + 6 f2 f5 f7 + 6 f3 f6 f7 + 6 f4 f5 f6

]
(8)

d f2

dt
= −|q2|2g

[
	(|q2|) f2 − 3 f 3

2

+ 6 f2

7∑
i=1

f 2
i + 6φ̄ f1 f6 + 6φ̄ f3 f7 + 6φ̄ f4 f5

+ 6 f1 f3 f4 + 6 f1 f5 f7 + 6 f3 f5 f6 + 6 f4 f6 f7

]
(9)

d f3

dt
= −|q3|2g

[
	(|q3|) f3 − 3 f 3

3

+ 6 f3

7∑
i=1

f 2
i + 6φ̄ f1 f5 + 6φ̄ f2 f7 + 6φ̄ f4 f6

+ 6 f1 f2 f4 + 6 f1 f6 f7 + 6 f2 f5 f6 + 6 f4 f5 f7

]
(10)

d f4

dt
= −|q4|2g

[
	(|q4|) f4 − 3 f 3

4

+ 6 f4

7∑
i=1

f 2
i + 6φ̄ f1 f7 + 6φ̄ f2 f5 + 6φ̄ f3 f6

+ 6 f1 f2 f3 + 6 f1 f5 f6 + 6 f2 f6 f7 + 6 f3 f5 f7

]
(11)

d f5

dt
= −|q5|2g

[
	(|q5|) f5 − 3 f 3

5

+ 6 f5

7∑
i=1

f 2
i + 6φ̄ f1 f3 + 6φ̄ f2 f4

+ 6 f1 f2 f7 + 6 f1 f4 f6 + 6 f2 f3 f6 + 6 f3 f4 f7

]
(12)

d f6

dt
= −|q6|2g

[
	(|q6|) f6 − 3 f 3

6

+ 6 f6

7∑
i=1

f 2
i + 6φ̄ f1 f2 + 6φ̄ f3 f4

+ 6 f1 f3 f7 + 6 f1 f4 f5 + 6 f2 f3 f5 + 6 f2 f4 f7

]
(13)

d f7

dt
= −|q7|2g

[
	(|q7|) f7 − 3 f 3

7

+ 6 f7

7∑
i=1

f 2
i + 6φ̄ f1 f4 + 6φ̄ f2 f3

+ 6 f1 f2 f5 + 6 f1 f3 f6 + 6 f2 f4 f6 + 6 f3 f4 f5

]
. (14)

The coefficient of the linear term of each amplitude equation is
given as a function of the wavenumber by

	(x) = 1

g

(
x2 + α

x2
− τ + 3φ̄2g

)
. (15)

Similarly, the free energy given by equation (1) can also be
written in terms of the amplitudes fi as

Ffcc = Fdis + g

[
7∑

i=1

	(|qi |) f 2
i + 3

2

7∑
i=1

f 4
i

+ 6
7∑

i=1

7∑
j=i+1

f 2
i f 2

j

+ 12 f1 f2 f3 f4 + 12( f1 f3 + f2 f4)(φ̄ f5 + f6 f7)

+ 12( f1 f2 + f3 f4)(φ̄ f6 + f5 f7)

+ 12( f1 f4 + f2 f3)(φ̄ f7 + f5 f6)

]
, (16)

where Fdis = − τ
2 φ̄2 + g

4 φ̄4 is the free energy for the
disorder state. The equilibrium period Q∗ of the periodic
structures should be determined by the minimization of the free
energy (16), ∂ Ffcc

∂ Q |Q=Q∗ = 0, as

Q4
∗ = α

(
12

4∑
i=1

f 2
i + 9

7∑
i=5

f 2
i

)/(
12

4∑
i=1

f 2
i + 16

7∑
i=5

f 2
i

)
.

(17)
Setting f5 = f6 = f7 = 0, the set of amplitude equations,

equations (8)–(11), agree with the set in the previous paper [9].
In [9], two types of equilibrium solutions were reported. The
first is f1 = f2 and f3 = f4, and the second is f1 = f2 = f3

and f4. By drawing their nullclines, the fcc structure f1 =
f2 = f3 = f4 	= 0 has been concluded to be unstable.

However, solving the entire set of the amplitude equations,
equations (8)–(14), numerically, the solution f1 = f2 = f3 =
f4 	= 0 was found to become stable with f5 = f6 = f7 	= 0.
For instance, f1 = f2 = f3 = f4 = −5.376 92 × 10−2 and
f5 = f6 = f7 = −2.985 50 × 10−2 are obtained numerically
for α = g = 1, τ = 2.10 and φ̄ = 0.15. In fact, substituting
f1 = f2 = f3 = f4 = A and f5 = f6 = f7 = B
into equations (8) and (12), we obtain the following reduced
equations:

dA

dt
= −Q2g

(
	(Q)A + 27A3 + 36AB2 + 18ABφ̄

)
(18)

dB

dt
= −4

3
Q2g

(
	

(
2Q√

3

)
B+48A2 B+15B3+12A2φ̄

)
. (19)

It is obvious that there are no solutions A 	= 0 and B = 0
because of the A2φ̄ term in equation (19). In other words,
since the homogenized amplitude equations require that both
A 	= 0 and B 	= 0, the effect of taking into account the higher
modes is not a simple perturbation but leads to qualitatively as
well as quantitatively different results from those of the single
mode approximation. Therefore, the higher harmonic modes
must be considered for the fcc structure as written in [21].
In the remainder of this section, a linear stability analysis is
performed around f1 = f2 = f3 = f4 = f .

4
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From equation (17), the equilibrium period is obtained as

Q4
∗ = α

48 + 9(η2
5 + η2

6 + η2
7)

48 + 16(η2
5 + η2

6 + η2
7)

, (20)

where η j = f j/ f , ( j = 5, 6, 7). Substituting equation (20)
into equation (15), the function 	(Q∗) is written as a function
of η5, η6 and η7, called 	∗(η5, η6, η7). On the other hand,
substituting f1 = f2 = f3 = f4 = f and d f/dt = 0 into
equation (8), we obtain

	∗(η5, η6, η7) = −3 f 2(9 + 2η2
5 + 2η2

6 + 2η2
7 + 2η5η6

+ 2η6η7 + 2η7η5) − 6 f φ̄(η5 + η6 + η7). (21)

Therefore, the condition 	∗(η5, η6, η7) < 3(η5 + η6 +
η7)

2φ̄2/(9 + 2η2
5 + 2η2

6 + 2η2
7 + 2η5η6 + 2η6η7 + 2η7η5) must

be satisfied in order for the real solution of f to exist.
The stability of the fcc solution can be examined by

substituting fi = f + ai(i = 1, 2, 3, 4) into equations (8)–
(11) and retaining only the linear terms of the deviations ai :

d

dt

⎛
⎜⎝

a1

a2

a3

a4

⎞
⎟⎠ = T

⎛
⎜⎝

a1

a2

a3

a4

⎞
⎟⎠ with

T = 6 f

⎛
⎜⎝

Tdia T6 T5 T7

T6 Tdia T7 T5

T5 T7 Tdia T6

T7 T5 T6 Tdia

⎞
⎟⎠ , (22)

where Tdia = (η5 + η6 + η7)φ̄ + (η5η6 + η6η7 + η7η5) f ,
T5 = −(3 + η6η7) f − η5φ̄, T6 = −(3 + η7η5) f − η6φ̄ and
T7 = −(3 + η5η6) f − η7φ̄. Diagonalizing equation (22), the
equations ∂t ui = λi ui , (i = 1, . . . 4) are obtained, where

λ1 = −54 f 2 (23a)

λ2 = 6 f 2(3 + 2η7η5 + 2η6η7) + 12 f (η5 + η6)φ̄ (23b)

λ3 = 6 f 2(3 + 2η5η6 + 2η6η7) + 12 f (η7 + η5)φ̄ (23c)

λ4 = 6 f 2(3 + 2η5η6 + 2η7η5) + 12 f (η6 + η7)φ̄, (23d)

and

u1 = a1 + a2 + a3 + a4

4
(24a)

u2 = a1 − a2 − a3 + a4

4
(24b)

u3 = −a1 − a2 + a3 + a4

4
(24c)

u4 = −a1 + a2 − a3 + a4

4
. (24d)

The sign of the eigenvalues is examined as follows. The
eigenvalue λ1 is always negative, and the signs of the other
eigenvalues become positive λ2 = λ3 = λ4 = 18 f 2 > 0 in the
case of η5 = η6 = η7 = 0. By solving the system of equations
u1 	= 0 and u2 = u3 = u4 = 0, the solution with fcc symmetry
a1 = a2 = a3 = a4 = u1 is obtained. The gray region in
figure 4 indicates that the eigenvalue λ2 = 6 f 2(3+2(ζ −m)κ)

becomes negative, where m = −φ̄/ f , ζ = η7 and κ = η5+η6.
The case u2 = �0 	= 0 and u1 = u3 = u4 = 0 provides the
solution a1 = −a2 = −a3 = a4 = �0, which grows in the

Figure 4. Contour plot of λ2 = 6 f 2(3 + 2(ζ − m)κ) on the ζ–κ
plane, where m = −φ̄/ f , ζ = η7 and κ = η5 + η6. The gray color
indicates the region of λ2 < 0, in which the fcc structure is linearly
stable.

white region in figure 4. Note that m is positive because of the
relation f φ̄ < 0 in [7]. The same figure can be used for λ3

with ζ = η6 and κ = η7 + η5 and for λ4 with ζ = η5 and
κ = η6 + η7.

There are two other combinations of ui . One is the case
that u1 = 0 and u2 = u3 = u4 ≡ �1, that is a1 = a2 = a3 =
−�1 and a4 = 3�1. The other is the case that u1 = 0, u2 = �2

and u3 = u4 = �3, i.e., a1 = �2 − 2�3, a2 = a3 = −�2, and
a4 = �2 + 2�3. Assembling these deviations, the amplitudes fi

(i = 1, . . . , 4) are written as

f1 = f − �1 + �′
2 − 2�3 (25a)

f2 = f − �1 − �′
2 (25b)

f3 = f − �1 − �′
2 (25c)

f4 = f + 3�1 + �′
2 + 2�3, (25d)

where �′
2 = �0 + �2. Figures 5(a)–(c) display the structures of

the deviations obtained by substituting equations (25a)–(25d)
with (a) �1 = 1 and f = �′

2 = �3 = 0, (b) �′
2 = 1 and

f = �1 = �3 = 0, and (c) �3 = 1 and f = �1 = �′
2 = 0,

into equation (6), respectively. Similarly, the structures in
figure 6 are obtained by changing the values of �1 and �′

2 in
equations (25a)–(25d) while keeping f fixed ( f = 1).

Comparing with the statement given in the paragraph just
below equation (17), we note that the deviations �1 and �′

2
correspond to the two types of equilibrium solutions of the
one-mode expansion [9]. If the magnitudes of the deviation
are equivalent to that of the fcc structure, the structures become
lamellar (figure 6(a) �1 = 1), diamond (figure 6(a) �1 = −1),
and distorted cylinder (figure 6(b) �′

2 = ±1) structures, which
have been reported as stable solutions in the case of the one-
mode expansion [9].

The amplitude equations and the free energy for the bcc
structure obtained by including higher order harmonics, are
given in appendix. The stability of the bcc solution is not
influenced by the higher modes. For example, the amplitudes
are obtained as bi = −5.349 96 × 10−2 (i = 1, . . . , 6) by
solving equations (A.4)–(A.9) with b j = 0 ( j = 7, 8, 9) for
α = g = 1, τ = 2.10 and φ̄ = 0.15. On the other hand,
the entire set of amplitude equations, equations (A.4)–(A.12),

5
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Figure 5. Structure of the deviations in the isosurface representation with φISO = 1.0.

Figure 6. Structure obtained by adding the deviations in figure 5 to the fcc structure of the one-mode expression in the isosurface
representation with φISO = 1.0 by changing the values of (a) �1, (b) �′

2, and (c) �3. If the magnitudes of the deviation are equivalent to that of
the fcc structure, the structures become lamellar ((a) �1 = 1), diamond ((a) �1 = −1), distorted cylinder ((b) �′

2 = ±1), and perforated
lamellar ((c) �3 = ±1) structures.

gives the solution bi = −5.335 30 × 10−2 (i = 1, . . . , 6) and
b j = −2.452 35 × 10−3 ( j = 7, 8, 9).

The essential difference of the mode expansion for bcc
and fcc can be seen in the reduced amplitude equations.
Substituting bi = C (i = 1, . . . , 6) and b j = D( j = 7, 8, 9)

into equations (A.4) and (A.10), the following equations are
obtained:

dC

dt
= −P2g

(
	(P)C + 45C3 + 36C2 D

+ 24C D2 + 12C2φ̄ + 12C Dφ̄
)

(26)

dD

dt
= −2P2g

(
	(

√
2P)D + 24C3 + 48C2 D

+ 15D3 + 12C2φ̄
)
. (27)

The difference between equations (19) and (27) is the C3

term in equation (27), which arises from the last term of
equation (A.3). Because of this term, the amplitude D becomes
zero for τ = 2

√
α + 8.25φ̄2g with C = −0.5φ̄. This

observation supports the fact that the magnitude of the peaks
corresponding to the higher modes for the bcc structure are
much smaller than those for the fcc structure in the weak
segregation regime in figure 1.
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Figure 7. Plot of the free energy difference (Famp − Fdir)/|Fdir|
versus τ , where Famp and Fdir are obtained by equation (16) and
equation (1), respectively.

Figure 7 shows the free energy difference (Famp −
Fdir)/|Fdir| as a function of τ , where the free energy Famp

is obtained by substituting the equilibrium solutions of
equations (8)–(14) into equation (16). In the same way,
the free energy Fdir is obtained by introducing the solutions
equation (4) into equation (1). It is obvious from this figure that
the results in this section are valid only for a weak segregation
regime. The accuracy of the mode expansion (6) decreases
with increasing value of τ .

4. Summary and discussion

The stability of the fcc structure has been investigated by the
simple free energy functional (1) for microphase separation.
In the phase diagram obtained numerically, there is a region
where the fcc structure is the most stable equilibrium structure.
In the present simulations, the relaxation dynamics was applied
to the size of the simulation box, which is valid for searching
the equilibrium structures. The phase diagram was not altered
qualitatively by changing the number of meshes as 64 ×
64 × 64. Furthermore, the amplitude equations were derived
by the mode expansion method, which is valid in the weak
segregation regime. The higher harmonic modes of the fcc
symmetry were taken into account, and it was confirmed that
the fcc structure could be formed at least as a metastable state.
These results suggest that the formation of the fcc structure
is possible experimentally if the system size is adjusted to the
equilibrium period of the fcc structure.

The stability of the fcc structure has a distinct property
compared to other structures that can be stable with the
minimal number of modes to express the target structure. That
is, one-mode expansions (two-mode expansions) are sufficient
for expressing and stabilizing the bcc, hexagonal cylinder, and
lamellar structures (gyroid and Fddd structures) [7–10]. On
the other hand, the fcc structure which is unstable without the
higher modes becomes stable by taking account of the higher
modes.

It is found by the mode expansion method that the fcc
structure can be a metastable structure in a certain region in

Figure 8. Phase diagram obtained by the direct simulation of
equation (30). The regions indicated by L, G, H, B, F, and D are the
stable phase of lamellae, gyroid, hexagons, bcc, fcc, and disorder,
respectively. The inset is the enlargement near the triple point G, L,
and H, where the Fddd structure is the most stable.

the weak segregation regime. However, these results are valid
only for a weak segregation as shown in figure 7, because it is
necessary to truncate the mode expansion up to a finite number.
Therefore, direct numerical simulations of equation (4) are
needed to investigate the stability propertied in a wider range
of segregation, which is time consuming, but more reliable
compared with the mode expansion truncated up to finite
number of modes. In fact, the free energy of bcc evaluated
by substituting the equilibrium solutions of equations (A.4)–
(A.12) into equation (A.3) is smaller than that of fcc evaluated
by substituting the equilibrium solutions of equations (8)–(14)
into equation (16) even in the region where fcc is the most
stable in figure 2.

We have verified that the present results are not specific for
the free energy (1). For instance, if we employ the Brazovskii
free energy [22]:

F[φ] =
∫

dr

[
1

2
(∇2φ)2 − β

2
(∇φ)2 − τ

2
φ2 + g

4
φ4

]
, (28)

the function 	(x) in the mode expansion equations (8)–(14) is
given by

	(x) = 1

g

(
x4 − βx2 − τ + 3φ̄2g

)
. (29)

This model free energy is used not only for phase separation
in polymer [23, 24] but also for crystal [25], the nematic-
to-smectic-C transition in liquid crystals [26], and Rayleigh–
Bénard convection [27].

The time evolution equation with the free energy
functional (28) is given by

∂φ

∂ t
= ∇2(∇4φ + β∇2φ − τφ + gφ3). (30)

Figure 8 is the phase diagram obtained by performing the direct
simulations of this evolution equation with β = 2 and g = 1.
There is a wider region than that shown in figure 2, where the
fcc structure is the most stable.
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Appendix

In the case of the bcc structure, the local volume fraction φ can
be represented as

φ(r) = φ̄ + 2
9∑

i=1

bi cos(pi · r) (A.1)

where

p1 = P√
2
(0, 1, 1), p2 = P√

2
(1, 0, 1),

p3 = P√
2
(1, 1, 0), p4 = P√

2
(0, 1,−1),

p5 = P√
2
(−1, 0, 1), p6 = P√

2
(1,−1, 0),

p7 = P√
2
(2, 0, 0), p8 = P√

2
(0, 2, 0),

p9 = P√
2
(0, 0, 2).

(A.2)

It is obvious that |pi | = P (i = 1, . . . , 6) and |p j | = √
2P

( j = 7, 8, 9). The free energy for the bcc structure is given by

Fbcc = Fdis + g

[
9∑

i=1

	(|pi |)b2
i + 3

2

9∑
i=1

b4
i + 6

9∑
i=1

9∑
j=i+1

b2
i b2

j

+ 12φ̄b1b2b6 + 12φ̄b1b3b5 + 12φ̄b2b3b4 + 12φ̄b4b5b6

+ 12φ̄b1b4(b8 + b9) + 12φ̄b2b5(b7 + b9)

+ 12φ̄b3b6(b7 + b8) + 12b1b2b4b5 + 12b1b3b4b6

+ 12b2b3b5b6 + 6(b2
6 + b2

3)b7b8 + 6(b2
4 + b2

1)b8b9

+ 6(b2
5 + b2

2)b7b9 + 12(b1b2b3 + b2b4b6

+ b3b4b5 + b1b5b6)(b7 + b8 + b9)

]
. (A.3)

The equations for amplitude are given by

db1

dt
= −|p1|2g

[
	(|p1|)b1 − 3b3

1

+ 6b1

9∑
i=1

b2
i + 6φ̄b2b6 + 6φ̄b3b5 + 6φ̄b4b8 + 6φ̄b4b9

+ 6b1b8b9 + 6b2b3b7 + 6b2b3b8 + 6b2b3b9 + 6b2b4b5

+ 6b3b4b6 + 6b5b6b7 + 6b5b6b8 + 6b5b6b9

]
(A.4)

db2

dt
= −|p2|2g

[
	(|p2|)b2 − 3b3

2

+ 6b2

9∑
i=1

b2
i + 6φ̄b1b6 + 6φ̄b3b4 + 6φ̄b5b7 + 6φ̄b5b9

+ 6b1b3b7 + 6b1b3b8 + 6b1b3b9 + 6b1b4b5 + 6b2b7b9

+ 6b3b5b6 + 6b4b6b7 + 6b4b6b8 + 6b4b6b9

]
(A.5)

db3

dt
= −|p3|2g

[
	(|p3|)b3 − 3b3

3

+ 6b3

9∑
i=1

b2
i + 6φ̄b1b5 + 6φ̄b2b4 + 6φ̄b6b7 + 6φ̄b6b8

+ 6b1b2b7 + 6b1b2b8 + 6b1b2b9 + 6b1b4b6 + 6b2b5b6

+ 6b3b7b8 + 6b4b5b7 + 6b4b5b8 + 6b4b5b9

]
(A.6)

db4

dt
= −|p4|2g

[
	(|p4|)b4 − 3b3

4

+ 6b4

9∑
i=1

b2
i + 6φ̄b1b8 + 6φ̄b1b9 + 6φ̄b2b3 + 6φ̄b5b6

+ 6b1b2b5 + 6b1b3b6 + 6b2b6b7 + 6b2b6b8 + 6b2b6b9

+ 6b3b5b7 + 6b3b5b8 + 6b3b5b9 + 6b4b8b9

]
(A.7)

db5

dt
= −|p5|2g

[
	(|p5|)b5 − 3b3

5

+ 6b5

9∑
i=1

b2
i + 6φ̄b1b3 + 6φ̄b2b7 + 6φ̄b2b9 + 6φ̄b4b6

+ 6b1b2b4 + 6b1b6b7 + 6b1b6b8 + 6b1b6b9 + 6b2b3b6

+ 6b3b4b7 + 6b3b4b8 + 6b3b4b9 + 6b5b7b9

]
(A.8)

db6

dt
= −|p6|2g

[
	(|p6|)b6 − 3b3

6

+ 6b6

9∑
i=1

b2
i + 6φ̄b1b2 + 6φ̄b3b7 + 6φ̄b3b8 + 6φ̄b4b5

+ 6b1b3b4 + 6b1b5b7 + 6b1b5b8 + 6b1b5b9 + 6b2b3b5

+ 6b2b4b7 + 6b2b4b8 + 6b2b4b9 + 6b6b7b8

]
(A.9)

db7

dt
= −|p7|2g

[
	(|p7|)b7 − 3b3

7

+ 6b7

9∑
i=1

b2
i + 6φ̄b2b5 + 6φ̄b3b6

+ 3b2
2b9 + 3b2

3b8 + 3b2
5b9 + 3b2

6b8

+ 6b1b2b3 + 6b1b5b6 + 6b2b4b6 + 6b3b4b5

]
(A.10)

db8

dt
= −|p8|2g

[
	(|p8|)b8 − 3b3

8

+ 6b8

9∑
i=1

b2
i + 6φ̄b1b4 + 6φ̄b3b6

+ 3b2
1b9 + 3b2

3b7 + 3b2
4b9 + 3b2

6b7

+ 6b1b2b3 + 6b1b5b6 + 6b2b4b6 + 6b3b4b5

]
(A.11)

8
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db9

dt
= −|p9|2g

[
	(|p9|)b9 − 3b3

9

+ 6b9

9∑
i=1

b2
i + 6φ̄b1b4 + 6φ̄b2b5

+ 3b2
1b8 + 3b2

2b7 + 3b2
4b8 + 3b2

5b7

+ 6b1b2b3 + 6b1b5b6 + 6b2b4b6 + 6b3b4b5

]
, (A.12)

where the function 	(x) is given by equation (15).
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